Desenvolvimento de um micromolinete com base no princípio da conversão eletromecânica de energia.

Ricardo de Araújo Rodrigues (Autor) Herly Carlos Teixeira Dias (Orientador)

Resumo

As vazões naturais dos cursos d'água têm natureza muito variável. Em um ano podem-se registrar tanto vazões muitos pequenas como muito grandes e, se observarmos períodos de um número razoável de anos, veremos uma variação ainda maior. Para que o aproveitamento dos recursos hídricos seja racional e benéfico, deve-se compatibilizar a oferta natural com a demanda, estabelecendo um uso mais harmonioso dos recursos existentes e deles extraindo maior proveito. Para tanto, é necessário conhecer as quantidades de água colocadas à disposição e também a sequência temporal da ocorrência das vazões. Existem vários métodos e instrumentos para determinar a vazão de cursos d'água, tendo cada um deles vantagens e limitações, sendo que para grandes vazões, o método tido como mais precioso é a determinação da vazão com o uso de molinetes. Infelizmente os molinetes têm um elevado custo de aquisição e de manutenção. Considerando a necessidade de se determinar as vazões dos cursos d'água com precisão e à baixo custo, decidimos desenvolver um micromolinete. Seu princípio de funcionamento é a correlação entre a tensão gerada por um gerador elétrico movido por uma hélice e a velocidade do fluxo da água no ponto onde é colocado o micromolinete. Como gerador, estamos usando um motor elétrico de corrente contínua, o qual, quando é colocado em rotação pelo fluxo de água. Devido ao fenômeno de indução de força eletromotriz que ocorre quando há movimento relativo entre ímãs e bobinas este funciona como um gerador. Concluímos que, sendo a energia produzida por este gerador, diretamente proporcional á velocidade de giro do motor, e esta dependente da velocidade de fluxo do fluído a movimentar a hélice, temos possibilidade de usar este conjunto, com o auxilio de um multímetro com sensibilidade para baixas tensões, tanto como molinete quanto como anemômetro, o que, dependerá tão somente de fazermos a calibração correta do mesmo para cada uma das funções. Em teste preliminar, com um protótipo, verificamos a validade do princípio de funcionamento, assim como recolhemos informações necessárias para dimensionar e projetar a versão final do instrumento, objetivando conferir a este, maior sensibilidade e precisão.